
Bending microarchitectural weird machines towards practicality

Ping-Lun Wang, Riccardo Paccagnella, Riad S. Wahby, and Fraser Brown
Carnegie Mellon University

Abstract
A large body of work has demonstrated attacks that rely on
the difference between CPUs’ nominal instruction set archi-
tectures and their actual (microarchitectural) implementations.
Most of these attacks, like Spectre, bypass the CPU’s data-
protection boundaries. A recent line of work considers a dif-
ferent primitive, called a microarchitectural weird machine
(µWM), that can execute computations almost entirely using
microarchitectural side effects. While µWMs would seem to
be an extremely powerful tool, e.g., for obfuscating malware,
thus far they have seen very limited application. This is be-
cause prior µWMs must be hand-crafted by experts, and even
then have trouble reliably executing complex computations.

In this work, we show that µWMs are a practical, near-
term threat. First, we design a new µWM architecture, Flexo,
that improves performance by 1–2 orders of magnitude and
reduces circuit size by 75–87%, dramatically improving the
applicability of µWMs to complex computation. Second, we
build the first compiler from a high-level language to µWMs,
letting experts craft automatic optimizations and non-experts
construct state-of-the-art obfuscated computations. Finally,
we demonstrate the practicality of our approach by extending
the popular UPX packer to encrypt its payload and use a µWM
for decryption, frustrating malware analysis.

1 Introduction

Modern processors achieve impressive performance through
astonishing complexity. In the last two decades, however, it
has become clear that this complexity threatens to completely
undermine memory isolation, which is crucial for nearly ev-
ery aspect of software security. This realization followed
the discovery of numerous microarchitectural attacks capa-
ble of leaking sensitive information—in the worst case, an
entire program’s memory—even in the absence of software
bugs [3–8, 13, 15, 21, 26, 31, 34, 39–54, 57–60, 64, 66–69, 72,
76–78,80,82,84,85,87,89,90,92,94–100,104,105,109–111,
113, 116–118, 126–128, 130, 133–136, 139–141].

These attacks stem from the difference between the abstrac-
tion the processor is intended to expose and the abstraction
that its implementation actually exposes—a gap that is pri-
marily the result of complexity in service of performance. As
an example, a recent wave of microarchitectural attacks relies
on the fact that the CPU may transiently execute code that,
per the semantics of the instruction set architecture (ISA), it
should not [13, 21, 52, 57, 66–69, 77, 80, 84, 85, 97–100, 105,
113, 116–118, 127, 128, 139]. While the ISA guarantees that
architectural state (e.g., the contents of registers and memory)
does not reflect such transient execution, it makes no promises
about implicit, microarchitectural state (e.g., the contents of
the cache or the internal state of the CPU’s branch prediction
machinery). Crucially, although this microarchitectural state
is not exposed by the ISA, programs can nevertheless modify
and observe this state (e.g., through timing measurements that
reveal cache residency). The result is that the actual processor
architecture is a strict superset of the intended one (i.e., the
ISA)—and that superset can give attackers superpowers.

A processor’s superset-of-ISA functionality is an instance
of the weird machine paradigm [11, 17, 35, 36] which con-
siders, for a given system, a “weird system” that extends the
system’s intended behavior with its unintended but observ-
able behavior. This paradigm formalizes the notion that an
attacker’s interaction with a system is bound by its actual im-
plementation, not by the designer’s intent. For CPUs, the past
two decades have demonstrated empirically that securing the
ISA is insufficient: it is the entire weird system—the ISA plus
observable microarchitecture—that must withstand attacks.

One recent line of work [38, 62, 63, 123, 125] explores mi-
croarchitectural weird machines (µWMs)—code gadgets that
perform computation purely through microarchitectural side
effects.1 µWMs resist analysis, both because they leave little
or no trace in the CPU’s architectural state and because they
are essentially invisible to conventional debuggers (as one

1Calling this code a weird machine is arguably an abuse of terminology:
strictly speaking, the code executes on the computational substrate exposed by
the weird superset of the ISA that is inherent in the CPU’s microarchitecture.
We nevertheless follow colloquial usage and call the code gadgets µWMs.

example: single-stepping through a µWM destroys the com-
putation). At first blush, such stealthy computation seems as
if it should lead to attacks at least as powerful as prior work
focused on crossing data-protection boundaries (e.g., Spec-
tre [68] and Meltdown [77]); indeed, prior work predicted that
µWMs would see widespread use in applications like mal-
ware obfuscation. To date, however, their only applications
have been clever but somewhat narrow: obfuscating simple
computations like 160-bit XOR and 2-block SHA-1 [38], and
improving cache side-channel attacks [62, 63].

This motivates our research question: is there any reason to
worry that µWMs can be made practical?—and thus, is there
any reason to invest effort in developing countermeasures?
By practical, we mean two specific criteria, neither of which
has been satisfied by prior work. First, it should be possible
to build µWMs that reliably compute complex functions with
reasonable performance across a range of microarchitectures.
Second, such µWMs should be broadly usable, not limited
to a handful of experts who painstakingly hand-craft weird
functionality. In this paper we address these challenges, then
answer our motivating question in the affirmative by building
a malware packer that uses µWMs to hinder analysis (§6).

In prior work, reliability of µWMs on complex computa-
tions is a thorny issue: a µWM’s reliability tends to fall off
precipitously as the size of the computation increases. While
prior work has explored techniques for detecting and correct-
ing errors, these tend to dramatically increase a computation’s
execution time even when no error occurs. Our µWM design
(§3), somewhat unintuitively, starts with a more costly differ-
ential logic encoding (i.e., one in which each bit is represented
by the difference between two “wires”). Although this seems
like it should make scaling more difficult, it has the effect of
making error detection and logical inversion nearly free—and
since these were by far the most costly primitives in prior
work (§2.2), the result is dramatically improved scaling.

This µWM design, which we call Flexo, is also far more
generic than prior work: rather than implementing a family
of small logic gates, we give a design that can compute any
N-input boolean function (N is determined by the CPU; our
testbed machines can handle 4-input functions; §3.1, §5). This
makes our design particularly suitable as a compilation tar-
get, a fact we leverage in our first-of-its-kind µWM compiler
(§4). Our compilation toolchain, which extends LLVM [73],
consumes C/C++ code and emits an assembly Flexo imple-
mentation. Beyond making Flexo accessible to non-experts,
our compiler makes it possible to create µWM-specific opti-
mization passes; we implement one as a proof of concept.

In summary, we make the following contributions:

• We propose a new circuit design for µWMs that reduces
circuit size by 75–87%, resulting in 1–2 orders of mag-
nitude speedup. Our design enables bit-wise error detec-
tion and correction—in one case improving a circuit’s
accuracy from 0.3% to 99.9%—while imposing almost

no overhead for circuits with high uncorrected accuracy.

• We design a compiler that can turn high-level C/C++
code into a µWM and use it to compile the SHA-1 hash
and the AES and Simon ciphers into µWMs.

• We present a weird machine packer that uses Flexo to
obfuscate UPX’s [88] unpacking process. Our packer
encrypts the packed executable, which a µWM later de-
crypts at runtime. The packer currently supports AES
and Simon decryption modules, which we implement in
under six hundred lines of C—but our compiler makes it
easy to build different obfuscated encryption schemes.

2 Background and related work

This section discusses transient execution (§2.1), upon which
we (and others) build microarchitectural weird machines
(§2.2). We discuss related work on circuit compilers in Sec-
tion 4, and likewise for binary packers in Section 6.

2.1 Transient execution
Transient execution occurs when a processor executes tran-
sient instructions that are never committed to the architec-
tural state [22]. Even though they do not change architectural
state, transient instructions can leave traces in the microar-
chitectural state (e.g., the cache), and these traces can be
observed by an attacker using microarchitectural side chan-
nels [3–8,15,26,31,34,39–51,53,54,58–60,64,72,76,78,82,
87,89,90,92,94–96,104,109–111,126,130,133–136,140,141].
This behavior is the foundation of transient execution at-
tacks [13,21,52,57,66–69,77,80,84,85,97–100,105,113,116–
118, 127, 128, 139], in which attackers exploit transient execu-
tion to access and leak program data. We adopt prior work’s
terminology and define the transient window as the period of
time during which a processor executes transient instructions
(e.g., following a branch misprediction or a fault). The length
of a transient window depends on the time required for the
processor to realize that the instructions executed within it
were, in fact, transient and should be discarded.

As a concrete example of transient execution—in fact, the
kind that our compiler targets (§4)—consider transient execu-
tion due to return address misprediction [69, 80]. The return
stack buffer (RSB) is a small per-core structure that predicts
the target of ret instructions. The RSB stores the address of
each instruction that follows a call instruction, predicting
that the calls will return to the addresses it has stored. The
prediction is usually correct—except when a function over-
writes its return address during execution. In such cases, the
processor transiently executes at the (mispredicted) address
stored in the RSB until it knows the function’s real return
address. The length of the transient window, therefore, de-
pends on the time the function takes to compute and load its

actual return address. By computing that return address using
different sequences of high-latency instructions, an attacker
can tune the length of the transient window.

2.2 Microarchitectural weird machines
Microarchitectural weird machines (µWMs) run computa-
tions that are, in theory, invisible to architectural state: they
use cache residency information to store values, and transient
execution and microarchitectural side channels to compute
on those values.2 The first µWM [38] relied on Intel TSX for
transient execution and could obfuscate 160-bit XOR and 2-
block SHA-1. However, it was relatively slow (26.5 min to run
2-block SHA-1) and leaked about 40% of its intermediate val-
ues to architectural state. Subsequent work improved µWMs’
construction and expanded their applications [62, 63, 125].
Wang et al. [125] show that any transient primitive (e.g., ex-
ceptions and branch predictors) can create µWMs, and that
both x86_64 and ARM CPUs can execute them. Kaplan [62]
and Katzman et al. [63] build µWMs that amplify cache side-
channel signals, and Katzman et al. [63] also present µWMs
that are much faster (923 ms to run 2-block SHA-1) and
stealthier (leaking about 1% of intermediate values to archi-
tectural state) than prior work.

Computational model µWMs compute on weird registers,
registers stored in microarchitectural state. Each weird register
can store a binary value and is associated with a cache line.
The value of a weird register is determined by the cache
residency of its cache line: if its line is in the cache, the weird
register value is ‘1’; if not, the weird register value is ‘0’.
In other words, weird registers are memory addresses that
store values in microarchitectural (i.e., cache) state, rather
than using main memory to store values in architectural state.

To set the value of a weird register to ‘1,’ a µWM must
bring the register’s cache line into the cache by loading or
storing its memory address. To set the value of a weird register
to ‘0’, a µWM must remove its cache line from the cache by
flushing its memory address (e.g., using clflush3).

µWMs use transient execution to execute code gadgets that
modify the values of weird registers. These gadgets (or “weird
gates” or “circuits”) implement boolean functions with one
or more input registers and a single output register. In the
following, we give examples of basic gates that, e.g., set the
value of an output weird register when both input registers
are ‘1.’ In these examples, the input registers always have an
all-zeros architectural value (i.e., the value in main memory),
and the output weird register’s microarchitectural value is
initially ‘0’ (i.e., flushed from cache).

AND and OR gates Prior work [63, 125] builds AND and OR
gates by exploiting the time difference between (fast) cache

2Note that constructions that do not rely on the cache (as mentioned
in [38]) or on transient execution (as shown in [137]) are also possible.

3Or e.g., DC CIVAC + DSB SY on ARM.

hits and (slow) cache misses. Listing 1, for example, shows
a weird gate that computes output Out[0] as In1[0] AND
In2[0]—so Out[0] ends up in the cache (i.e., as ‘1’) only
if In1[0] and In2[0] were in the cache (i.e., were ‘1’) to
begin with. To execute this code, the processor checks the
cache for both weird registers, and fetches them if they are
not there. It uses the architectural values of these registers
to compute the address of Out[0], which it then fetches into
cache. Therefore, if the transient window is shorter than the
cache miss latency, the output weird register will end up in
cache only if both input registers are already in cache; oth-
erwise, the processor will not have time to pull the output
register into cache (i.e., set its value to ‘1’) before transient
execution ends. Building a correct gate requires controlling
the length of the transient window; see the prior section for
more detail on controlling this length.

1 Out[In2[In1[0]]] = 0;
1 Out[In1[0]] = 0;
2 Out[In2[0]] = 0;

Listing 1: The AND gate (left) and the OR gate (right). The
output is initially not in the cache, and the inputs have ar-
chitectural values set to zero. These gates are executed in
transient execution.

NOT gate Prior work [62,63,125] uses µWMs to implement
the NOT gate in Listing 2, with input weird register In[0] and
output register Out[0]. This gate controls the length of the
transient window so that the processor only fetches the output
into the cache when the input is not in the cache. The first step
(not pictured) is training the branch predictor to take the false
branch at line one and jump straight to line two. Then, when
the weird gate executes, the branch predictor mispredicts the
branch and transiently executes line two. If In[0] is in cache
(‘1’), the processor can resolve the branch target quickly. This
does not give the processor time to pull Out[0] into cache,
since delay is a function that takes more time than a cache
hit (but less than a cache miss) to compute. In contrast, when
In[0] is not in cache (i.e., ‘0’), the processor has time to
bring Out[0] into cache (i.e., make it ‘1’).

1 if (In[0] == 0) return; // trained to go to line 2
2 Out[delay(0)] = 0; // cache hit < delay < cache miss

Listing 2: The NOT gate. The output is initially not in the
cache, and the input has the architectural value set to zero.

Executing more complex logic in a single transient window
So far we have discussed executing a single, one- or two-input
gate per transient window. In practice, it is more efficient to
execute as much weird computation as possible within a single
transient window. For example, Listing 3 uses an AND gate

and an OR gate to compute Out[0] = (In1[0]∧In2[0])∨
In3[0] within one transient execution.

1 Out[In1[In2[0]]] = 0;
2 Out[In3[0]] = 0;

Listing 3: A composed AND and OR gate. The output is initially
not in the cache, and the inputs have architectural values set
to zero. This gate is executed in transient execution.

Unfortunately, with the constructions discussed in this sec-
tion, it is impossible to compose inverting and non-inverting
gates (e.g., AND and NOT) within one transient execution.
While non-inverting gates use a fixed transient window length
that is slightly shorter than the cache miss latency, invert-
ing gates have a window length that depends on their inputs.
Therefore, choosing a specific transient window length for
the composition of both gates would break one gate or the
other. As a result, building most complex functionality has
in all prior work required executing weird computations in
many distinct transient windows of distinct length.

3 New circuit construction

We propose a new weird circuit construction, Flexo, for com-
puting arbitrary N-input, one-output boolean functions within
a single transient execution. The number of inputs, N, is
architecture-dependent; the x86_64 machines we evaluate
in this paper support 4-input functions (§3.1, §5).

Flexo uses a differential (or dual-rail) encoding [115,
Ch. 9], wherein a logical value is represented as the difference
between two “wire” values. Here, a wire is exactly a weird
register, and its value is stored as cache residency information.
At first glance, using twice as many wires seems wasteful—
and for simple boolean functions like AND and OR, it is. But
when expressing more complex functionality, the benefits of
our generic, high-level computational primitive outweigh the
costs (§5). Specifically, Flexo improves:

• Performance. Prior work implements complex function-
ality by composing a small set of simple gates (e.g., AND,
OR, and NOT [38, 62, 63, 125]); in general, such composi-
tions span multiple transient executions. Implementing
the same functionality with Flexo uses fewer, more com-
plex gates, each taking a single transient execution. Em-
pirically, this yields smaller, faster circuits. For example,
all prior work computes 2-input XOR by composing (at
least) five transient executions; Flexo computes 4-input
XOR in a single execution.

• Accuracy. Since circuits built from Flexo gates are more
concise than existing constructions, they are less sus-
ceptible to errors caused by microarchitectural noise.
Further, even when errors happen, Flexo’s differential

encoding makes them easy to detect (and thus correct!):
since only two of the four possible configurations for a
gate’s output value are valid, the other two configurations
indicate an error in the gate’s execution (§3.2).

• Flexibility. Because Flexo can implement any N-to-1
boolean function (for our testbeds, N = 4; §5), it is an
easier compilation target than prior designs: our compiler
synthesizes a set of 4-input truth tables, then implements
them directly. We discuss further in Section 4.

Looking ahead, Section 5 shows that Flexo reduces circuit
size by 75–87%, contributing to its 17% higher accuracy and
25× faster runtime compared to the prior state of the art [63].
In this section, we define our encoding (§3.1), then outline
how this encoding makes error detection simple (§3.2) and
how we optimize Flexo gates (§3.3) for accuracy.

3.1 Differential encoding
We use a classical differential encoding, which represents a
logical boolean value (i.e., true or false) as the difference
of two wire values (recall that our wire values are stored in
weird registers; §2.2). One wire suffices to encode a boolean
value: when the wire has a high value (H), we usually say it
encodes true, and likewise for a low value (L) and false.
In contrast, a differential encoding represents a boolean value
w with two wire values, w− and w+, such that w− ̸= w+. To
represent w = false, we choose w−w+ = HL, and likewise
w = true is represented as w−w+ = LH. Since there are
four possible states for the combination of two wires (i.e.,
w−w+ ∈ {HH,HL,LH,LL}), w−w+ can also represent two
invalid states (i.e., when w− = w+).

Representing boolean functions with differential encod-
ings Consider a boolean function o = f (i1, . . . , iN), where
o, i1, . . . , iN ∈ {true,false}. We can think of a differential
gate computing f as a pair of boolean expressions, one that
computes each of the differential output wires, i.e., o− =
f−(i1−i1+, . . . , iN−iN+) and o+ = f+(i1−i1+, . . . , iN−iN+),
where f+ = f and f− = ¬ f .

Deriving expressions for f+ and f− is straightforward:
first, expand the logical expressions for f and ¬ f to minterm
canonical form (i.e., to a sum of products). Next, replace each
non-negated variable v with that variable’s v+ wire, and each
negated variable w with that variable’s w− wire. The result is
a pair of inversion-free expressions that compute o−o+. Logi-
cal manipulations like these are used extensively by electronic
design automation (EDA) toolchains, e.g., tools used to pro-
gram field-programmable gate arrays (FPGAs) [19, 79, 129];
our compiler (§4) uses Yosys [129] for this procedure.

As a concrete example of differential encoding, consider
the AND gate o = f (i1, i2) = i1 ∧ i2. We have that ¬ f (i1, i2) =
¬(i1 ∧ i2) = ¬i1 ∨ ¬i2, where the latter expression is the
minterm canonical form, meaning that the following pair of

1 Out_p[In1_p[In2_p[0]]] = 0;
2 Out_m[In1_m[0]] = 0;
3 Out_m[In2_m[0]] = 0;

Listing 4: A differential µWM for AND. o+ and o− correspond
to Out_p and Out_m, and likewise for i1, In1 and i2, In2.

1 Out_p[In1_p[In2_m[0]]] = 0; // XOR(1, 0) = 1
2 Out_p[In1_m[In2_p[0]]] = 0; // XOR(0, 1) = 1
3 Out_m[In1_p[In2_p[0]]] = 0; // XOR(1, 1) = 0
4 Out_m[In1_m[In2_m[0]]] = 0; // XOR(0, 0) = 0

Listing 5: A differential µWM for XOR. o+ and o− correspond
to Out_p and Out_m, and likewise for i1, In1 and i2, In2.

expressions implements the differential gate in terms of the
differential inputs: o+ = i1+∧ i2+ and o− = i1−∨ i2−. List-
ing 4 shows our implementation of gate as a µWM using the
basic AND and OR gadgets from Listing 1 (§2.2).

As a slightly more complex example, consider XOR, i.e.,
o = f (i1, i2) = (i1 ∨ i2)∧¬(i1 ∧ i2). Following the process
above, we have o+ = (i1+∧ i2−)∨ (i1−∧ i2+), o− = (i1+∧
i2+)∨(i1−∧ i2−). Listing 5 shows our implementation of this
gate, which computes XOR in a single transient execution—
something that no prior work has been able to achieve.

How many inputs can Flexo support? As with all µWMs,
the complexity limit for Flexo gates is dictated by the length
of the CPU’s transient window. Compared to prior work, how-
ever, Flexo is much less sensitive to the logical function being
calculated. In particular, prior work uses a cascade of gates
to implement functionality that inverts inputs or intermediate
states (§2.2). In most cases, such compositions span multiple
transient windows, reducing speed and accuracy. In contrast,
as described above, Flexo’s differential encoding lets it com-
pute logical functions directly as a sum of products of the
differential input values.

Speaking generally, the cost to evaluate a sum of products
depends on the number of terms and the number of variables
per term. Every N-to-1 boolean function f has at most 2N

minterms in total between the f+ and f− expressions (i.e., at
most one term per truth table entry), where each term depends
on at most N variables (i.e., an input or its negation).4 The
XOR gate (and its generalization to N inputs, which computes
the sum of inputs mod 2) is an example of a maximal-cost
gate: for any N, N-input XOR has 2N minterms in total between
f+ and f−, with N variables per minterm.

4A simple counting argument shows that, as N grows, most N-to-1 func-
tions must be close to the maximum size. This is why we consider generic
N-to-1 functions: while it might be possible to squeeze a bit more perfor-
mance out of Flexo by considering a subset of, say, (N +1)-to-1 functions,
most of the time we expect that the payoff will be small. We leave detailed
investigation and further optimization to future work.

Thus, if a given CPU supports Flexo’s XOR on N inputs,
Flexo can compute any N-input function. Our experiments
show that the eight x86_64 testbed architectures on which
we evaluate (§5, Table 1) can correctly evaluate at most a 4-
input XOR (and thus, any 4-input boolean function) in a single
transient execution. Other microarchitectures may differ.

3.2 Bit-wise error detection and correction
Flexo’s differential encoding gives bit-wise error detection
“for free,” and lets us build accurate error correction that does
not impose high overhead. Prior work [38, 63] implements er-
ror correction with majority-of-five voting, which requires re-
running a circuit five times to produce a final, error-corrected
output. In this approach, however, error correction does not
scale with the accuracy of the underlying circuit: it imposes
unnecessary overhead for already-accurate circuits and may
not run enough error-correction rounds to correct inaccurate
circuits. Flexo overcomes these limitations by dynamically
re-executing a circuit only when it detects an error. Section 5
shows that this approach has small overhead (≈ 1.8%) for
circuits with good accuracy yet can correct extremely low
accuracy—in one case, improving a circuit with 0.3% uncor-
rected accuracy to 99.9%.

Error detection Since our differential encoding only allows
two valid output states (HL and LH), the other two states (HH
and LL) signal an error in the circuit’s execution. This can
happen when a prefetcher fetches both wires in the cache,
or when both wires are evicted from the cache. While all
invalid states indicate an error, not all errors cause invalid
states. Immediately below, we discuss the way we overcome
this limitation with a careful application of majority voting.

Error correction When Flexo detects an error in the out-
put bits of a circuit, it needs to re-run that circuit to correct
the error. The naive approach is to re-run the circuit until a
single run produces a completely valid set of output bits; for
a three-output circuit, this means that one run must produce
three valid outputs. For better performance, though, we save
the results of every valid output bit over the repeated circuit
executions—and only re-run the circuit until there exists a
valid bit for every output. If one run of a three-output circuit
produces two valid bits and another produces the third, for
example, we can stop re-running the circuit: we have saved
three valid output bits over the course of the two runs.

While differential encoding can detect errors leading to
invalid outputs HH or LL, it cannot detect errors that lead to
valid (but incorrect) outputs. This could happen, for example,
if the overall result of a computation should be HL, but some
errors cause the computation to incorrectly output LH. To
address this problem, we run a majority vote for each output
bit in the circuit. On each run, for each valid output bit, we
record whether that bit is zero or one. Once each output is
either zero or one > 50% of the time, we return the majority’s

choice for each output and stop re-running the circuit.5 In
contrast to prior work, this means that in principle our cir-
cuits’ runtime is unbounded. In practice, however, a circuit
with reasonable accuracy (> 10%) only needs a few—in our
experiments, at most seven—re-runs to produce the output,
while circuits with much lower accuracy (< 1%) can incur
much larger overhead (100–250×).

3.3 Optimizing the memory layout

Prior work shows that microarchitectural features such as the
prefetcher affect µWM’s accuracy. Katzman et al. [63] report
that enabling the prefetcher reduces the accuracy of their
circuits by 41–52%. Evtyushkin et al. [38] and Kaplan [62]
also discuss the accuracy-related effects of weird registers’
placement and alignment in memory.

These observations motivate us to optimize Flexo’s mem-
ory layout to reduce these microarchitectural effects. For
Flexo, the two most important factors for accuracy are (1)
the spacing between successive weird registers (i.e., the size
of the gaps between two weird registers’ memory addresses),
and (2) the mapping from circuit wires to cache lines. Our
evaluation (§5) demonstrates that Flexo’s accuracy remains
high without disabling the prefetcher—in fact, Flexo gives
higher accuracy with the prefetcher enabled than prior state
of the art does with the prefetcher disabled [63].6

Setting the spacing between weird registers As noted
above, the memory layout of weird registers is a key design
parameter. If weird registers R1 and R2 have memory ad-
dresses that are too close together, the prefetcher might fetch
(say) R2 into the cache as a side effect of the weird machine’s
fetching R1, thereby corrupting the value in R2. Similarly,
if registers R1 and R2 both map to the same cache set in a
set-associative cache, computing on one register might cause
the other’s eviction, which also leads to corruption.

Kaplan [62] suggests separating weird registers by 4160
(4096+64) bytes: a ≥ 4096-byte offset puts weird registers
on different pages, defeating the prefetcher, and the additional
64-byte offset ensures that most weird registers map to a
different cache set. But a separation this large is not suitable
for large circuits: when the number of active pages exceeds
the size of the translation lookaside buffer, the resulting page
table thrashing adds more noise to the circuit’s execution. In
our evaluation (§5), we use 1088-byte (1024+64) gaps for the
smallest circuit (the 4-bit ALU). For the larger circuits (SHA-
1, AES, and Simon), which require more weird registers, we
use either 576- or 488-byte (512±64) gaps.

5Flexo’s compiler (§4) makes it easy to tune runtime versus accuracy by
specifying the number of votes required when choosing an output value.

6Requiring the prefetcher to be disabled makes a µWM less practical:
modern CPUs’ prefetchers can only be disabled with root or BIOS access, and
the prefetcher is generally enabled by default because it boosts performance.

Randomizing weird register memory layout To reduce
the effect of the prefetcher for large circuits (which, as
discussed immediately above, must use smaller register-to-
register gaps), Flexo also randomizes the mapping of weird
registers to memory addresses before each execution.

To do so, Flexo accesses weird registers via an indirection
table R defining a permutation on {0, . . . ,k−1} for k weird
registers. When the gap between weird registers is g bytes
and the base memory address of the weird register file is
b, the address of (zero-indexed) weird register j is given by
b+g ·R (j). R is implemented as a length-k array of integers;
before execution, Flexo shuffles {0, . . . ,k−1} into the array.

4 A compiler for Flexo

To execute a program using a µWM, a programmer must
express that program as a boolean circuit. Transforming a
high-level computation into a (well-performing) circuit and
implementing that circuit as a µWM is both difficult and error-
prone—especially for complex programs like cryptographic
computations. To address this, we build the first compiler
that generates µWMs. Our compiler consumes C or C++ and
targets the differential encoding presented in Section 3; as we
discuss below, this is an easier target than prior encodings.

Our compiler makes it easy to create efficient weird ma-
chines. For example, the source code for our SHA-1 hash
function is 274 lines of code, whereas prior work [63] requires
around two thousand lines to implement the same circuit from
low-level logic gates. This convenience does not sacrifice
performance: our compiler-generated implementation of one
SHA-1 round is about 25× faster than prior work (§5). As
further evidence that µWM compilers can improve both per-
formance and usability, we implement three proof-of-concept
optimization passes and configuration hooks:

• Error detection hooks let us build Section 3’s error cor-
rection mechanism in 21 lines of code.

• The compiler lets us configure the length of the transient
window (§2.1), which makes it easy to fine-tune µWMs
for a given microarchitecture.

• An optimization pass makes generated circuits more
resilient to prefetching and cache eviction.

In this section, we outline prior work that inspired our com-
piler, and then give an overview of our compilation pipeline.
Our compiler is implemented in 2245 lines of C++ code.

Background: circuit compilers and high-level synthesis
While prior work suggests building compilers that target
µWMs [125], this work, to our knowledge, is the first such im-
plementation. Still, compiling from programming languages
to circuits is an important research topic in several distinct
fields. High-level synthesis (HLS) creates a hardware de-
scription from a programming language (often, C or C++);

see [32] for a survey. In contrast to our compiler, which pro-
duces purely combinational circuits (discussed below), the
key challenge in HLS is efficiently handling stateful circuits
(e.g., flip-flops or latches). HLS techniques may nevertheless
prove valuable in future work (§7), particularly with regard
to optimization.

Further afield, compilers target the circuit-like representa-
tions [91] used by cryptographic primitives like multi-party
computation [2, 14, 20, 24, 55, 56, 81], fully homomorphic
encryption [121], and probabilistic proof systems [18, 29, 70,
93, 106, 107, 122]. These compilers transform high-level pro-
grams into boolean or arithmetic circuits, which, as in µWMs,
are almost always purely combinational. Similarly, program
verifiers [9, 10, 25, 27, 28, 30, 61, 65, 71, 74, 112, 119, 120, 131]
target logical formulas (which are isomorphic to combina-
tional circuits). Both verifiers and cryptographic compilers
allow programmers to use control flow (via standard flatten-
ing techniques (e.g., as in [25])) and memory operations (via
domain-specific representations). Future µWMs may build on
such techniques to support a richer input language.

µWM compiler overview Figure 1 shows the process by
which our compiler constructs a weird machine from a C or
C++ function. First, the programmer provides an input file
and annotates the functions that should be compiled to weird
machines. Each annotated function is processed by an LLVM
pass that translates it into a Verilog [1] description. This pass
treats function bodies as the circuit’s computation, function
arguments as the input and output wires of the circuit, and the
function’s return value as an error detection bit (§4.1).

The compiler uses Yosys [129], an off-the-shelf EDA tool,
to synthesize the Verilog into a set of truth tables with at most
4 inputs. For each such truth table, the compiler generates
an assembly implementation of a Flexo gate. Finally, the
compiler optimizes the memory layout of the weird machines
and splices them into the original LLVM IR file. Appendix A
shows the output of each compilation stage.

Input program requirements Since µWMs are ultimately
boolean circuits, compiler input programs must not contain:

• Intermediate loads or stores: The compiler only permits
load operations on input variables and store operations
of output variables, with constant load or store addresses.

• Control flow: Function bodies cannot contain branches,
function calls, or loops.

• Unsupported operations: Only arithmetic, comparison,
logical, bitwise, assignment, and ternary operators are
allowed (e.g., no address-of operator).

Future work can avoid these restrictions using known tech-
niques (see above). Even with these limitations, our compiler
supports complex computations like SHA-1 and AES (§5).

Finally, our compiler implements special semantics for ar-
guments and return values of the functions it translates. A

1 #define ROL(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
2

3 void __weird__sha1_round(
4 unsigned* input,
5 unsigned* output, unsigned* error_output
6) {
7 unsigned a = input[0];
8 unsigned b = input[1];
9 unsigned c = input[2];

10 unsigned d = input[3];
11 unsigned e = input[4];
12 unsigned w = input[5];
13 unsigned k = 0x5A827999;
14

15 unsigned f = (b & c) | ((~b) & d);
16 unsigned temp = ROL(a, 5) + f + e + w + k;
17

18 output[0] = temp;
19 output[1] = a;
20 output[2] = ROL(b, 30);
21 output[3] = c;
22 output[4] = d;
23 }

Listing 6: An example input program to our compiler. This
program implements one round of SHA-1.

4. Output LLVM IR (with Flexo)

1. Input C/C++ program

2. Verilog circuit

3. Truth tables for μWM gates

Translate LLVM IR to high-level Verilog

Logic synthesis using Yosys (EDA tool)

Generate the weird machine

Figure 1: The compiler pipeline. In the first stage, the compiler
executes clang’s frontend with the -emit-llvm flag to emit
LLVM IR code.

µWM’s input values are function arguments (which can be
pointers or integral types), as are its outputs (which must be
pointers; see §4.1). Specifying a bool function return type
directs the compiler to emit extra error detection code: the
function returns true if any output wire yields an error.

4.1 The compilation pipeline
Our compiler converts input programs (e.g., Listing 6) into
boolean circuits in several pipeline stages, shown in Figure 1.

From LLVM IR to Verilog circuit In this stage, the com-
piler translates LLVM IR into a high-level Verilog circuit.
It treats function arguments as input and output buses; an
input is an argument whose value is only ever read, and an
output is one whose value is only ever written. The restric-

tions on input programs discussed above make the LLVM IR
to Verilog conversion step straightforward. For example, the
compiler converts arithmetic instructions into the correspond-
ing Verilog operators and converts memory instructions into
assignments between wires or buses.

In addition to specifying a global boolean return value that
is set if an error occurred, the programmer can specify error
bits for individual outputs, which can be used to implement
custom error correction. To implement the error correction
described in Section 3, for example, we write code that checks
each output’s error flag, saves valid values, and conditionally
re-executes the circuit.

From Verilog to truth tables Our compiler guarantees that
the Verilog it generates encodes purely combinational logic
(i.e., free of memory elements like flip-flops and latches). The
Verilog can thus be translated into truth tables using stan-
dard logic synthesis techniques [101, Ch. 12]. Our compiler
uses Yosys [129], an open-source synthesis tool that targets
FPGAs; this is convenient because Flexo’s arbitrary 4-input
gates (§3) closely resemble an FPGA’s lookup tables (LUTs).
The output from Yosys is a set of 4-input truth tables, which
would normally be used to program an FPGA’s LUTs; our
compiler instead uses them to construct a µWM.

We note that Flexo’s ability to implement any 4-input
boolean function makes this step substantially easier while
improving the quality of the result. In principle, one could use
Yosys to target the set of gates supported by prior work (e.g.,
AND, OR, and NOT [38, 62, 63, 125]). However, extracting good
performance from such a circuit would be challenging be-
cause it would require the synthesis process to account for the
speed, size, and accuracy of a composition of heterogeneous
gates. In contrast, the performance of Flexo’s 4-input gates is
essentially oblivious to the logical function being computed,
and its basic unit of computation is much richer than prior
work’s. This dramatically simplifies the synthesis process and
completely eliminates a (difficult) optimization pass.

From truth tables to Flexo The final pipeline stage con-
verts the prior stage’s truth tables into Flexo gates and emits an
assembly implementation of the µWM. To do so, the compiler
uses the Quine-McCluskey logic minimization algorithm [83]
to construct the f+ and f− expressions as sums of products,
then implements those expressions using basic AND and OR
gadgets (§2.2; Listings 4 and 5, §3.1).

The compiler then generates assembly to prepare the cir-
cuit’s inputs (i.e., by transferring the values from architectural
to microarchitectural state), to read the circuit’s outputs into
architectural state (i.e., by measuring cache residency informa-
tion for each output value), and to trigger transient execution
for each gate (via return address misprediction; §2.1). The
compiler’s approach to triggering transient execution gives it
precise control over the length of the transient window. This
is a parameter that the user can set, giving a convenient knob
for tuning the µWM to a particular microarchitecture.

The compiler optimizes the µWM’s memory layout to im-
prove accuracy in the face of prefetching and cache evictions
(§3.3): it controls the spacing between successive weird regis-
ters (to avoid prefetching and correlated evictions), and emits
code that randomizes weird registers’ memory locations be-
fore each execution (to further counteract the prefetcher). Fi-
nally, the compiler splices the optimized assembly code into
the LLVM IR file and generates a standard executable.

5 Evaluation

We now evaluate Flexo via the following questions:

1. How does Flexo compare to state-of-the-art prior work
in speed and accuracy? (§5.1)

2. How large of a Flexo circuit can execute correctly across
different microarchitectures? (§5.2)

3. How does Flexo perform on larger computations (i.e.,
SHA-1 and AES) using composed circuits? (§5.3)

We find that Flexo significantly reduces the circuit size
and performs one to two orders of magnitude faster than the
state of the art. Furthermore, Flexo is the first µWM that can
perform reliably (≥97.8% accuracy) across different microar-
chitectures even for complex computations like SHA-1 and
AES, allowing us to build an end-to-end application: a weird
machine–based packer (§6).

Throughout this section, we construct circuits for Flexo
using the compiler described in Section 4. These circuits are
compiled from at most a few hundred lines of C or C++, and
constructing the circuits requires no manual edits. This stands
in stark contrast to prior work, in which all circuits must be
hand crafted by experts.

Testbeds We evaluate Flexo on eight different AWS EC2
machine types (Table 1), all running Ubuntu 22.04; we use
one of these machines (Skylake) to reproduce the results of
state-of-the-art prior work (§5.1). Our testbed machines cover
several of the latest x86_64 microarchitectures from AMD
and Intel. (In the rest of this section we refer to these machines
using their microarchitectures, e.g., “Skylake.”)

Because we run our experiments in a public cloud environ-
ment, other tenants are able to inject noise into the CPU’s
shared microarchitectural states. While our experiments sug-
gest that this noise has little effect on our results (see Ap-
pendix B for details), achieving high accuracy on shared ma-
chines increases our confidence that Flexo is suitable for
deployment in real-world settings.

Experimental method To measure Flexo’s runtime and
accuracy on a given circuit, we compile (§4) a binary that
evaluates the circuit one thousand times on random inputs
and reports the number of correct executions and total time.
We then repeatedly execute that binary for forty-three hours

Microarchitecture Instance Type Processor
Zen 1 t3a.xlarge AMD EPYC 7571
Zen 2 c5a.xlarge AMD EPYC 7R32
Zen 3 c6a.xlarge AMD EPYC 7R13
Zen 4 m7a.xlarge AMD EPYC 9R14
Skylake c5n.xlarge Intel Xeon 8124M
Cascade Lake m5n.xlarge Intel Xeon 8259CL
Icelake m6in.xlarge Intel Xeon 8375C
Sapphire Rapids m7i.xlarge Intel Xeon 8488C

Table 1: The AWS EC2 instances and processors we use to
perform our evaluation.

without error correction and one hundred hours with error cor-
rection, and then we report the median from these executions.

This measurement approach is similar to prior work. Run-
ning the same circuit repeatedly amortizes away constant
measurement offsets. Reporting the median of several exe-
cutions avoids outlier cases where the µWM fails because of
an unlucky combination of microarchitectural and architec-
tural state (e.g., page alignment, cache state, noise from other
processes or tenants, etc.).

When preparing a binary for a given microarchitecture, we
first run a sweep to determine the transient window length
that gives the best accuracy or the shortest runtime. We build
circuits with fifty different transient window lengths by adjust-
ing the number of division instructions used when triggering
transient execution (§2.1). For circuits without error correc-
tion, we choose the transient window length that gives the
best accuracy; for circuits with error correction, we choose
the one with the shortest runtime among those with an ac-
curacy of at least 95%. This process does not require expert
hand-tuning, but as in prior work it means that our binaries
are specific to a target microarchitecture. In Section 6, we
show that a single µWM-enhanced packer binary works on
all the Intel machines from our testbed, meaning that non–
microarchitecture-specific binaries can still have good perfor-
mance; in Section 7, we discuss ideas to further enhance our
compiler’s ability to create generic, multi-microarchitecture
binaries.

5.1 How does Flexo compare to prior work?
We compare the accuracy and execution time of our circuits
to those from Gates of Time (GoT) [63], state-of-the-art prior
work building µWMs. We find that, across a variety of cir-
cuits, Flexo performs approximately 25–49× faster and 4–
17% more accurately than GoT with error correction, and
approximately 5–10× faster and 18–39% more accurately
than GoT without error correction.

Reproducing GoT’s results We evaluate both projects on
the Skylake machine. Although we do not use exactly the
same CPU as GoT (their CPU is unavailable on AWS EC2),

4-bit ALU
GoT [63] Flexo Improvement

Wires 336 62 -81.55%
Gates 250 32 -87.20%
Accuracy 81.00% 98.90% +17.90%
Runtime (µs) 134.37 13.58 9.89×

With error correction
Accuracy 96.00% 100.00% +4.00%
Runtime (µs) 673.48 13.82 48.73×

Table 2: Comparison of the circuit size, accuracy, and runtime
of GoT [63] and Flexo for the 4-bit ALU.

SHA-1 round function
GoT [63] Flexo Improvement

Wires 2976 1061 -64.35%
Gates 2208 544 -75.36%
Accuracy 57.00% 95.80% +38.80%
Runtime (µs) 1161.91 219.12 5.30×

With error correction
Accuracy 83.00% 100.00% +17.00%
Runtime (µs) 5771.13 233.32 24.73×

Table 3: Comparison of the circuit size, accuracy, and runtime
of GoT [63] and Flexo for one round of SHA-1.

our CPU uses the same core microarchitecture as the one used
in their evaluation. Further, our reported results for GoT are
similar to those reported in GoT. Specifically, Tables 2 and 3
give similar results to [63, §4.1–4.2] with prefetchers enabled.

We evaluate two circuits from GoT: a 4-bit arithmetic logic
unit (ALU) and one round of the SHA-1 hash function. We
choose these computations because they are of practical in-
terest and cover a range of circuit sizes (SHA-1 is about 10×
larger than the 4-bit ALU). To evaluate GoT’s performance,
we execute the shell script in their artifact,7 reporting median
accuracy and runtime. We compare both error-corrected and
non-error-corrected GoT and Flexo circuits.

Results without error correction The top portion of Ta-
ble 2 compares GoT’s 4-bit ALU performance to that of Flexo.
Flexo reduces the circuit size by 87.20% compared to GoT,
which leads to a 9.89× speedup. At the same time, Flexo
improves the circuits’ accuracy from 81% to 98.9% without
relying on error correction or detection. Flexo also reduces
the SHA-1 circuit size by 75.36% (with a 5.3× speedup) and
increases accuracy by 38.8% (Table 3).

7https://github.com/0xADE1A1DE/GoT/blob/main/circuits
/run_experiment_all_with_prefetcher.sh. This script executes the
circuit one hundred times to measure accuracy and runtime, and repeats this
ten thousand times to collect the median.

https://github.com/0xADE1A1DE/GoT/blob/main/circuits/run_experiment_all_with_prefetcher.sh
https://github.com/0xADE1A1DE/GoT/blob/main/circuits/run_experiment_all_with_prefetcher.sh

Results with error correction The bottom portions of Ta-
ble 2 and 3 compare error-corrected GoT to error-corrected
Flexo. Table 2 and 3 show that, with error correction, Flexo
achieves perfect accuracy with tiny performance penalty. Our
bit-by-bit error correction mechanism (§3.2) increases the
accuracy while maintaining high performance, yielding only
1.76% (ALU) or 6.48% (SHA-1) longer runtime.

While error-corrected GoT also enjoys much higher accu-
racy, its runtime is 48.73× and 24.73× slower than Flexo for
ALU and SHA-1, respectively. This is because GoT imple-
ments error correction using majority voting: it executes the
same circuit five times, and then outputs the most common
result. While this improves the circuit’s accuracy, it also in-
creases the runtime by ≈5× compared to the un-corrected
version. In contrast, Flexo re-runs the circuit (correction) only
when it detects an error (§3.2), and thus incurs minimal over-
head when the circuit is already accurate.

5.2 How large can a Flexo circuit be?
Scaling µWMs to large circuits is challenging. As the circuit
grows, it needs more storage for the values of wires and may
start incurring self-evictions in the cache. Using more cache
lines might also increase interference from hardware prefetch-
ers. This results in less accurate circuits. For example, when
the circuit in Section 5.1 grows by ≈10×—from a 4-bit ALU
to the SHA-1 circuit—GoT’s accuracy degrades by 24%.

In this section, we show that Flexo’s design can handle
much larger circuits than those in prior work. We do so by
executing four circuits across a range of sizes: in addition to
the simple 4-bit ALU and the first round of SHA-1 from the
prior section, we evaluate circuits implementing one round
of AES encryption and the entire Simon block cipher [12],
which are five and eight times larger than the SHA-1 circuit,
respectively. We evaluate the accuracy and runtime of Flexo
on the eight machines in Table 1, finding that Flexo supports
a wide range of CPU microarchitectures and that its error
correction mechanism dramatically increases accuracy—in
one case, from under 0.3% to over 99.9%.

Circuit implementation The ALU and SHA-1 implemen-
tations are the same ones reported in Section 5.1.

To build one round of AES encryption with a 128-bit
key, we implement its four operations, which are SubBytes,
ShiftRows, MixColumns, and AddRoundKey (214 lines of C).
The most challenging operation is SubBytes, which requires
computing a multiplicative inverse over GF(28). While Sub-
Bytes is usually implemented as a lookup table (i.e., the
AES S-box), this approach would be inefficient in Flexo.
We instead use the method of Canright et al. [23] and Satoh
et al. [102] to compute a multiplicative inverse directly.

We also implement Simon [12], a lightweight block cipher
designed for microcontrollers. We use the variant with 32-bit
blocks and a 64-bit key. Because this cipher is so simple, we
can execute the entire cipher in one circuit (50 lines of C).

Results Table 4 shows the results of the four test circuits on
our eight testbed machines. We find that Flexo can compute
large circuits (> 4k gates) with very high accuracy (≥ 99.3%)
on all testbed machines, demonstrating that it supports com-
plex computations that prior µWMs could not handle. As
Tables 2 and 3 demonstrate, Flexo’s circuit construction (§3)
results in ≈4–8× smaller circuits than prior work, meaning
that a 4k-gate Flexo circuit supports significantly more com-
plex functionality than prior work with that number of gates.

For ALU and SHA-1, most of our testbed machines give
high accuracy even without error correction (EC). The AES
circuit, in contrast, is ≈5× as large as SHA-1 and its accuracy
is much lower. But even when its accuracy is as low as 1.4%
(on Zen 3 and Zen 4), EC can still correct all errors at the cost
of longer runtime (≈7×).

Simon is the largest circuit, and most AMD CPUs give very
low accuracy. For Zen 3, we must reduce the circuit size from
4322 gates to 3282 gates by reducing the number of rounds
in the cipher (from 32 to 25) in order to generate correct
outputs. In other words, the maximum size of a Flexo circuit
for Zen 3 is ≈3k gates. Beyond this size accuracy drops to
zero, at which point error correction cannot help. Other Zen
machines still give nonzero accuracy when computing the full
32 rounds. In these cases, even when accuracy is as low as
0.3%, error correction still improves it to 99.9%, although the
performance penalty is high (≈298×).

5.3 How does Flexo perform on composed cir-
cuits?

A standard technique for running large computations in
µWMs is to stitch several smaller circuits together via archi-
tectural computations. While this approach is helpful, it does
not entirely address the problem of scaling µWMs to large
computations, for two reasons. First, it exposes more of the
computation in architectural states, which may increase the
likelihood of detection—so fewer stitches (i.e., larger µWM
circuits; §5.2) is better for stealth. Second, as a natural con-
sequence of composing circuits with imperfect accuracy, the
accuracy and/or speed of the overall computation suffers.

In this section, we evaluate Flexo’s accuracy and runtime
when composing several circuits. In particular, we use the
single round SHA-1 and AES circuits as building blocks to
compose a complete SHA-1 hash function and AES encryp-
tion. As in prior work, we stitch these circuits together by
using architectural computation to transform the outputs of
one circuit into the inputs of the next one.

Results Table 5 shows the results of the SHA-1 hash func-
tion with two input blocks and the AES encryption with one
block and a 128-bit key. The SHA-1 hash function is com-
posed of 160 small circuits (one circuit per round, 80 rounds
per block), while the AES encryption comprises 19 small
circuits (ten rounds and nine round keys).

Circuit 4-bit ALU SHA-1 (1 round) AES (1 round) Simon (1 block)

Size
Wires Gates Wires Gates Wires Gates Wires Gates

62 32 1061 544 4990 2524 8288 4322
Machine EC Accuracy Runtime Accuracy Runtime Accuracy Runtime Accuracy Runtime

Zen 1 ✘ 97.90% 14.74 76.40% 230.30 5.50% 1058.65 0.40% 1808.68
✓ 100.00% 15.59 100.00% 314.57 100.00% 10152.12 99.90% 432834.08

Zen 2 ✘ 99.00% 14.24 97.20% 228.43 5.80% 953.82 8.60% 1582.57
✓ 100.00% 14.32 100.00% 235.29 100.00% 5228.24 99.90% 21105.43

Zen 3 ✘ 99.50% 12.44 68.90% 199.47 1.40% 843.91 0.60%* 1042.26*
✓ 100.00% 12.41 100.00% 255.20 100.00% 5732.02 99.30%* 102473.62*

Zen 4 ✘ 99.50% 13.53 71.50% 219.43 1.40% 942.37 0.30% 1525.78
✓ 100.00% 13.68 100.00% 302.44 100.00% 7069.24 99.90% 455014.59

Skylake ✘ 98.90% 13.58 95.80% 219.12 10.30% 1167.93 22.30% 2851.97
✓ 100.00% 13.82 100.00% 233.32 100.00% 7922.10 99.90% 14028.95

Cascade
Lake

✘ 98.70% 13.46 95.90% 219.78 9.40% 1072.33 25.60% 2070.49
✓ 100.00% 13.64 100.00% 230.21 100.00% 5038.20 99.90% 7955.66

Icelake ✘ 92.50% 10.98 80.90% 167.22 10.90% 1416.23 34.30% 2431.28
✓ 100.00% 11.86 100.00% 208.10 100.00% 6540.76 99.90% 13177.12

Sapphire
Rapids

✘ 96.50% 14.20 83.90% 221.37 14.40% 1036.83 13.10% 1665.37
✓ 100.00% 14.82 100.00% 265.29 100.00% 4196.98 99.90% 11014.05

Table 4: The accuracy and runtime of Flexo with or without error correction (EC) on different CPUs. The runtime is in
microseconds. *For Zen 3, we reduce the number of encryption rounds from 32 to 25 since it cannot correctly compute Simon
encryption with more than 25 rounds. The circuit for 25 rounds has 6528 wires and 3282 gates.

SHA-1 AES
Acc. Runtime Acc. Runtime

Zen 1 99.00% 55.95 99.80% 347.72
Zen 2 99.30% 45.07 99.70% 204.16
Zen 3 97.80% 46.85 99.90% 206.72
Zen 4 99.60% 53.84 100.00% 215.39

Skylake 99.60% 44.68 100.00% 265.91
Cascade

Lake 99.80% 43.68 100.00% 218.68

Icelake 99.80% 38.51 100.00% 239.33
Sapphire
Rapids 98.00% 48.28 99.80% 210.47

Table 5: The accuracy and runtime of the SHA-1 hash function
and the AES encryption of Flexo with error correction on
different CPUs. The runtime is in milliseconds.

We find that Flexo is able to achieve high accuracy (≥
97.8%) for both computations. For comparison, the GoT au-
thors report 95.1% accuracy for two blocks (i.e., 160 one-
round circuits) of SHA-1 [63, §4.2].8 Runtime is also better
than in prior work: composing 160 GoT SHA-1 round circuits
with error correction (using the single-round runtime from
§5.1) would be more than 20× slower than our SHA-1 results.

8The GoT measurement appears to require disabling the prefetcher to
give better accuracy. As discussed in Footnote 6, this may not be possible for
a user-level attacker because it requires root or BIOS access.

6 A weird machine packer

In this section we modify UPX [88], a binary packer [114]
that is among the most widely used for malware [86], by
obfuscating its unpacking process in order to make analysis
more difficult. Our modified UPX uses a Flexo decryption
stage during unpacking (and a corresponding encryption stage
when packing; this is not obfuscated because it is never run
on a victim machine) using Simon [12] or AES (§5.2).

Prior work [38, 125] also obfuscates malware with a µWM,
but the obfuscation is limited to simple XOR operations and
requires expertly hand-crafted µWM designs. Evtyushkin
et al. [38] report that computing XOR on twenty bytes of
data takes around 500 ms; Flexo takes less time to compute
AES-CTR decryption on that amount of data. This work also
demonstrates for the first time that using a µWM to obfuscate
large computations is feasible for a non-expert: as mentioned
in the prior section, our implementations of Simon and AES
comprise 119 and 402 lines of C, respectively, and our com-
piler is able to automatically add it to UPX. We also modify
the original UPX project with 412 lines of C++ to add an
encryption stage during the encryption process and invoke
the weird machine during unpacking.

Background: program obfuscation Program obfuscation
makes a program more difficult to understand by increas-
ing its complexity without changing its functionality [132].
Developers may use obfuscation to protect intellectual prop-
erty [37], enforce software licensing [103], prevent tamper-

Decompress

Compress

UPX
Unpack

Pack

Input program Packed program

</>

(a) UPX

Decompress

Compress

UPX + WM
Unpack

Pack

Input program Packed program

</> Decrypt
(Using Flexo)

Encrypt

chksum chksum

(b) Our µWM packer (UPX + Flexo)

Figure 2: The packing (right arrows) and unpacking process
(left arrows) of UPX and our weird machine packer.

ing [138], defeat anti-virus protection, or raise the cost of
malware analysis [114].

Many program obfuscation techniques focus on making
static and dynamic analysis more difficult. Anti-debugger,
anti-sandbox, and anti-VM techniques let programs change
behavior when they detect a dynamic analysis tool [108],
and control flow flattening [124], junk code [75], and constant
data encoding [132] make static analysis harder. Packers make
malware less visible to static analysis tools by compressing
an executable, then creating a new executable that contains
the compressed data along with the code to unpack and run it.

These obfuscation techniques, however, happen in archi-
tectural states, and their computations and states are visible.
While ExSpectre [123] aims to hide these tracks in transient
executions, they can only move the computations into tran-
sient executions, and their states are still stored architecturally.
In contrast, our Flexo-based packer hides both computation
and program state in the microarchitecture.

µWM packers Figure 2 gives an overview of the packing
and unpacking processes for our µWM packer. At a high level,
unmodified UPX (Fig. 2a) compresses the original binary
and creates a self-unpacking executable. Our µWM packer
(Fig. 2b) makes three changes: first, it computes a set of
checksums after compressing the data; second, it encrypts
the compressed data; and third, in addition to the encrypted
data, it injects the checksums and the decryption µWM into
the self-unpacking executable. For the encryption scheme,
users can choose AES or Simon in counter mode depending
on their requirements.9 Since Simon is simpler, it generally
runs faster; AES, on the other hand, makes unpacking more
complex, which may improve obfuscation.

During unpacking, the µWM decrypts the payload, then the
unpacking code checksums the result, retrying decryption if

9Users can also utilize our compiler to implement a different encryption
scheme for the packer.

Simon AES Single binary
Zen 1 909.67 355.63
Zen 2 64.66 242.17
Zen 3 304.72 259.49
Zen 4 2008.87 263.98

Skylake 79.37 354.48 81.15
Cascade Lake 58.92 300.12 109.40

Icelake 146.58 306.12 146.58
Sapphire Rapids 50.13 268.35 60.14

Table 6: Our unpacker’s median runtime in seconds using
Simon and AES ciphers across the testbed CPUs (§6). The
rightmost column is the runtime of the Icelake-specific binary
using Simon on all Intel microarchitectures.

there is a mismatch with the packed checksums. Finally, the
UPX runtime decompresses the program and executes it.

The net result is that our µWM packer makes analysis even
more difficult than standard packing. Performing unpacking
steps in µWMs, for example, foils existing static analysis tools
that depend on running a standard unpacker before analyzing
code [16]. Flexo also breaks existing dynamic deobfuscation
techniques that rely on emulation or single-stepping through
the unpacking process. Such techniques interrupt transient
execution, which causes unpacking to fail.

How fast is the unpacking process? We evaluate our
packer on the ls binary from Ubuntu 23.04 (132 kiB un-
compressed, 58 kiB compressed) using the testbed machines
in Table 1. For each machine, our unpacker injects a Flexo
decryption circuit with the same transient window length used
in Section 5. We run the unpacker 100 times and calculate
the median runtime, and Table 6 shows the results for Simon
and AES. In summary, AES gives similar speed on all ma-
chines, roughly five minutes. On Zen 2 and Intel machines,
Simon is faster: it finishes unpacking within eighty seconds,
i.e., 2.1–5.3× faster than AES.

Can we create a cross-microarchitecture packed binary?
The rightmost column of Table 6 shows the runtime of the
Icelake-specific binary with Simon µWM on all four Intel
microarchitectures. While the results are slower than with
microarchitecture-specific binaries, the slowdown is always
less than 2×, showing that Flexo can target multiple architec-
tures simultaneously.

7 Conclusion and future work

This work started by asking whether µWMs should be con-
sidered a practical threat, or if they are likely to remain lim-
ited to simple computations and accessible only to a small
group of experts. Our results show that µWMs have orders of
magnitude more potential as a computational primitive than
previously known, and that non-experts assisted by a compiler

can craft µWMs with state-of-the-art performance. History
has shown that, beyond some minimum viability threshold,
attack techniques tend to become more powerful over time.
Considering both their extremely clever application to cache
side-channel attacks in prior work [62, 63] and the perfor-
mance and broad applicability demonstrated here, we believe
µWMs are now well beyond that threshold. We thus conclude
that µWMs merit further study, both to understand their limits
and to develop detection methods and countermeasures. To
that end, we offer a few specific suggestions:

Circuit optimizations Flexo circuits (and µWM circuits
more generally) are very different from traditional circuits:
the wires (weird registers) are volatile, which means their
values are destroyed after a read, and the size of a logic gate is
determined by the number of minterms of its boolean function.
In contrast, traditional circuits can read from a wire multiple
times without additional cost, and the size of a lookup table in
FPGA circuits is determined by the number of inputs instead
of the number of minterms. This raises interesting questions
with regard to optimizations: (1) should we account for the
cost of reusing wires in a circuit, and if so, how? and (2) how
can we minimize the number of transient windows required
by a weird circuit (e.g., by packing as many minterms as
possible into each window)? Accounting for these special
characteristics may result in much more efficient circuits.

Hiding and detecting weird machines Although µWMs
frustrate program analysis by hiding computational states, be-
having differently when debugged, and expressing high-level
computations as low-level logic gates, their implementations
are still visible in the program’s code. While it would be a
challenge, an analyst could reverse engineer the assembly
code of a µWM to reconstruct the computation.

It may be possible to further hinder this type of analysis by
hiding µWMs in dead code that is usually ignored by binary
analysis tools—or even by camouflaging real µWMs with
dummy ones. Of course, this is most helpful if the defender’s
goal is understanding the µWM—it is likely much easier to
detect binaries containing µWMs (say, in a malware scanner).
As µWM obfuscation becomes more of a threat, good de-
tection and analysis techniques will become more important.
These may include, for example, using hardware performance
counters [33] and checking if a program’s execution differs
between normal execution and single-step debugging.10

Runtime calibration for transient windows To improve
performance and accuracy, our compiler can generate bina-
ries with different transient window lengths depending on the
target microarchitecture (§4–§6). With additional engineering
work, however, we could extend our compiler to produce bi-
naries that calibrate transient window length at runtime. Our
evaluation shows that this one parameter suffices to retarget

10Recall that single-step debugging breaks µWMs, e.g., by affecting its
transient execution and timing behaviors.

Flexo across a wide range of microarchitectures, indicating
that such runtime calibration is plausible because it does not
involve a complex multi-parameter optimization.

Microarchitecture-specific µWMs In Section 6, we
showed that Flexo binaries compiled for a specific microar-
chitecture can port to other microarchitectures. Such cross-
microarchitecture binaries are useful because they do not
require tailoring to individual machines, enabling attackers to
build obfuscated, portable malware that can infect as many ma-
chines as possible. An intriguing alternative direction would
be to explore the design of compilers for µWMs that work
only on specific microarchitectures, by leveraging properties
or optimizations that are unique to those microarchitectures.
These microarchitecture-specific binaries would be useful
for targeted attack scenarios, where an attacker may want
their malware to activate only on the specific target machines.
Such binaries could also raise the analysis cost by requiring
analysts to examine them on specific microarchitectures.

Acknowledgments

We thank the anonymous reviewers for their helpful feedback.
This research was supported by the Ann and Martin McGuinn
Graduate Fellowship.

References
[1] Verilog. IEEE Std 1364-2005, 2006.

[2] Coşku Acay, Rolph Recto, Joshua Gancher, Andrew C. Myers, and
Elaine Shi. Viaduct: An extensible, optimizing compiler for secure
distributed programs. In PLDI, 2021.

[3] Onur Aciiçmez. Yet another microarchitectural attack: Exploiting
i-cache. In CSAW, 2007.

[4] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. Predicting
secret keys via branch prediction. In CT-RSA, 2007.

[5] Onur Acıiçmez and Werner Schindler. A vulnerability in RSA imple-
mentations due to instruction cache analysis and its demonstration on
OpenSSL. In CT-RSA, 2008.

[6] Onur Acıiçmez and Jean-Pierre Seifert. Cheap hardware parallelism
implies cheap security. In FDTC, 2007.

[7] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan,
Cesar Pereida García, and Nicola Tuveri. Port contention for fun and
profit. In S&P, 2019.

[8] Diego F Aranha, Felipe Rodrigues Novaes, Akira Takahashi, Mehdi
Tibouchi, and Yuval Yarom. LadderLeak: Breaking ECDSA with less
than one bit of nonce leakage. In CCS, 2020.

[9] Thomas Ball, Ella Bounimova, Vladimir Levin, Rahul Kumar, and
Jakob Lichtenberg. The Static Driver Verifier research platform. In
CAV, 2010.

[10] Thomas Ball, Vladimir Levin, and Sriram K Rajamani. A decade
of software model checking with SLAM. CACM, 54(7):68–76, July
2011.

[11] Julian Bangert, Sergey Bratus, Rebecca Shapiro, and Sean W Smith.
The page-fault weird machine: Lessons in instruction-less computa-
tion. In WOOT, 2013.

[12] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark,
Bryan Weeks, and Louis Wingers. The SIMON and SPECK
lightweight block ciphers. In DAC, 2015.

[13] Mohammad Behnia, Prateek Sahu, Riccardo Paccagnella, Jiyong Yu,
Zirui Zhao, Xiang Zou, Thomas Unterluggauer, Josep Torrellas, Car-
los Rozas, Adam Morrison, Frank Mckeen, Fangfei Liu, Ron Gabor,
Christopher W Fletcher, Abhishek Basak, and Alaa Alameldeen. Spec-
ulative interference attacks: Breaking invisible speculation schemes.
In ASPLOS, 2021.

[14] Assaf Ben-David, Noam Nisan, and Benny Pinkas. FairplayMP: a
system for secure multi-party computation. In CCS, 2008.

[15] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandt-
ner, Alessandro Sorniotti, Babak Falsafi, Mathias Payer, and Anil
Kurmus. SMoTherSpectre: Exploiting speculative execution through
port contention. In CCS, 2019.

[16] Bitdefender. Technologies used in the antimalware engine. https:
//www.bitdefender.com/files/News/CaseStudies/study/3
51/Bitdefender-OEM-Antimalware-tech-eng-TechBrief-c
rea4549-210x297-en-EN-interactive.pdf, 2024.

[17] Sergey Bratus, Michael E. Locasto, Meredith L. Patterson, Len Sas-
saman, and Anna Shubina. Exploit programming: From buffer over-
flows to “weird machines" and theory of computation. login Usenix
Mag., 36, 2011.

[18] Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath Setty,
Andrew J. Blumberg, and Michael Walfish. Verifying computations
with state. In SOSP, 2013.

[19] Robert Brayton and Alan Mishchenko. ABC: An academic industrial-
strength verification tool. In CAV, 2010.

[20] Niklas Büscher, Daniel Demmler, Stefan Katzenbeisser, David Kret-
zmer, and Thomas Schneider. HyCC: Compilation of hybrid protocols
for practical secure computation. In CCS, 2018.

[21] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael
Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom. Fallout: Leak-
ing data on meltdown-resistant cpus. In CCS, 2019.

[22] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Ben-
jamin Von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin,
and Daniel Gruss. A systematic evaluation of transient execution
attacks and defenses. In USENIX Security, 2019.

[23] David Canright. A very compact S-box for AES. In CHES, 2005.

[24] Edward Chen, Jinhao Zhu, Alex Ozdemir, Riad S Wahby, Fraser
Brown, and Wenting Zheng. Silph: A framework for scalable and
accurate generation of hybrid MPC protocols. In S&P, 2023.

[25] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for check-
ing ANSI-C programs. In TACAS, 2004.

[26] Shaanan Cohney, Andrew Kwong, Shahar Paz, Daniel Genkin, Nadia
Heninger, Eyal Ronen, and Yuval Yarom. Pseudorandom black swans:
Cache attacks on CTR DRBG. In S&P, 2020.

[27] Lucas Cordeiro, Bernd Fischer, and Joao Marques-Silva. SMT-based
bounded model checking for embedded ANSI-C software. In ASE,
2009.

[28] Lucas Cordeiro, Pascal Kesseli, Daniel Kroening, Peter Schrammel,
and Marek Trtik. JBMC: A bounded model checking tool for verifying
Java bytecode. In CAV, 2018.

[29] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Ben-
jamin Kreuter, Michael Naehrig, Bryan Parno, and Samee Zahur. Gep-
petto: Versatile verifiable computation. In S&P, 2015.

[30] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto,
Julien Signoles, and Boris Yakobowski. Frama-C. In SEFM, 2012.

[31] Miles Dai, Riccardo Paccagnella, Miguel Gomez-Garcia, John Mc-
Calpin, and Mengjia Yan. Don’t mesh around: Side channel attacks
and mitigations on mesh interconnects. In USENIX Security, 2022.

[32] Luka Daoud, Dawid Zydek, and Henry Selvaraj. A survey of high
level synthesis languages, tools, and compilers for reconfigurable high
performance computing. In ICSS, 2013.

[33] Sanjeev Das, Jan Werner, Manos Antonakakis, Michalis Polychron-
akis, and Fabian Monrose. Sok: The challenges, pitfalls, and perils of
using hardware performance counters for security. In S&P, 2019.

[34] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen.
Prime+Abort: A timer-free high-precision L3 cache attack using intel
TSX. In USENIX Security, 2017.

[35] Stephen Dolan. mov is Turing-complete, 2013.

[36] Thomas Dullien. Weird machines, exploitability, and provable unex-
ploitability. IEEE Transactions on Emerging Topics in Computing,
8(2), 2017.

[37] Shouki A. Ebad, Abdulbasit A. Darem, and Jemal H. Abawajy. Mea-
suring software obfuscation quality–a systematic literature review.
IEEE Access, 2021.

[38] Dmitry Evtyushkin, Thomas Benjamin, Jesse Elwell, Jeffrey A. Eitel,
Angelo Sapello, and Abhrajit Ghosh. Computing with time: Microar-
chitectural weird machines. In ASPLOS, 2021.

[39] Dmitry Evtyushkin and Dmitry Ponomarev. Covert channels through
random number generator: Mechanisms, capacity estimation and miti-
gations. In CCS, 2016.

[40] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh.
Jump over ASLR: Attacking branch predictors to bypass ASLR. In
MICRO, 2016.

[41] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Un-
derstanding and mitigating covert channels through branch predictors.
TACO, 13(1), 2016.

[42] Stefan Gast, Jonas Juffinger, Martin Schwarzl, Gururaj Saileshwar,
Andreas Kogler, Simone Franza, Markus Köstl, and Daniel Gruss.
SQUIP: Exploiting the scheduler queue contention side channel. In
S&P, 2023.

[43] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of
microarchitectural timing attacks and countermeasures on contempo-
rary hardware. JCEN, 8(1), 2018.

[44] Daniel Genkin, Luke Valenta, and Yuval Yarom. May the fourth be
with you: A microarchitectural side channel attack on several real-
world applications of Curve25519. In CCS, 2017.

[45] Ben Gras, Cristiano Giuffrida, Michael Kurth, Herbert Bos, and Kaveh
Razavi. ABSynthe: Automatic blackbox side-channel synthesis on
commodity microarchitectures. In NDSS, 2020.

[46] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Trans-
lation leak-aside buffer: Defeating cache side-channel protections
with TLB attacks. In USENIX Security, 2018.

[47] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano
Giuffrida. ASLR on the line: Practical cache attacks on the MMU. In
NDSS, 2017.

[48] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Man-
gard. Flush+Flush: A fast and stealthy cache attack. In DIMVA,
2016.

[49] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache template
attacks: Automating attacks on inclusive last-level caches. In USENIX
Security, 2015.

[50] Roberto Guanciale, Hamed Nemati, Christoph Baumann, and Mads
Dam. Cache storage channels: Alias-driven attacks and verified
countermeasures. In S&P, 2016.

[51] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache games
- bringing access-based cache attacks on AES to practice. In S&P,
2011.

https://www.bitdefender.com/files/News/CaseStudies/study/351/Bitdefender-OEM-Antimalware-tech-eng-TechBrief-crea4549-210x297-en-EN-interactive.pdf
https://www.bitdefender.com/files/News/CaseStudies/study/351/Bitdefender-OEM-Antimalware-tech-eng-TechBrief-crea4549-210x297-en-EN-interactive.pdf
https://www.bitdefender.com/files/News/CaseStudies/study/351/Bitdefender-OEM-Antimalware-tech-eng-TechBrief-crea4549-210x297-en-EN-interactive.pdf
https://www.bitdefender.com/files/News/CaseStudies/study/351/Bitdefender-OEM-Antimalware-tech-eng-TechBrief-crea4549-210x297-en-EN-interactive.pdf

[52] Berk Gulmezoglu, Andreas Zankl, M Caner Tol, Saad Islam, Thomas
Eisenbarth, and Berk Sunar. Undermining user privacy on mobile
devices using AI. In CCS, 2019.

[53] Yanan Guo, Xin Xin, Youtao Zhang, and Jun Yang. Leaky way: A
conflict-based cache covert channel bypassing set associativity. In
MICRO, 2022.

[54] Yanan Guo, Andrew Zigerelli, Youtao Zhang, and Jun Yang. Adver-
sarial prefetch: New cross-core cache side channel attacks. In S&P,
2022.

[55] Wilko Henecka, Stefan Kögl, Ahmad-Reza Sadeghi, Thomas Schnei-
der, and Immo Wehrenberg. TASTY: tool for automating secure
two-party computations. In CCS, 2010.

[56] Andreas Holzer, Martin Franz, Stefan Katzenbeisser, and Helmut
Veith. Secure two-party computations in ANSI C. In CCS, 2012.

[57] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical timing side
channel attacks against kernel space ASLR. In S&P, 2013.

[58] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. S$A: A shared
cache attack that works across cores and defies VM sandboxing – and
its application to AES. In S&P, 2015.

[59] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Cross processor
cache attacks. In ASIACCS, 2016.

[60] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk
Sunar. Wait a minute! A fast, cross-VM attack on AES. In RAID,
2014.

[61] Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem
Penninckx, and Frank Piessens. VeriFast: A powerful, sound, pre-
dictable, fast verifier for C and Java. In NASA Formal Methods Sym-
posium, 2011.

[62] David Kaplan. Optimization and amplification of cache side channel
signals, 2023.

[63] Daniel Katzman, William Kosasih, Chitchanok Chuengsatiansup, Eyal
Ronen, and Yuval Yarom. The Gates of Time: Improving cache attacks
with transient execution. In USENIX Security, 2023.

[64] Mehmet Kayaalp, Nael Abu-Ghazaleh, Dmitry Ponomarev, and Aamer
Jaleel. A high-resolution side-channel attack on the last level cache.
In DAC, 2016.

[65] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles,
and Boris Yakobowski. Frama-C: A software analysis perspective. In
FAC, 2015.

[66] Vladimir Kiriansky and Carl Waldspurger. Speculative buffer over-
flows: Attacks and defenses, 2018.

[67] Ofek Kirzner and Adam Morrison. An analysis of speculative type
confusion vulnerabilities in the wild. In USENIX Security, 2021.

[68] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Ex-
ploiting speculative execution. In S&P, 2019.

[69] Esmaeil Mohammadian Koruyeh, Khaled N Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. Spectre returns! Speculation attacks
using the return stack buffer. In WOOT, 2018.

[70] Ahmed E. Kosba, Charalampos Papamanthou, and Elaine Shi. xJsnark:
A framework for efficient verifiable computation. In S&P, May 2018.

[71] Daniel Kroening and Michael Tautschnig. CBMC–C bounded model
checker. In TACAS, 2014.

[72] Michael Kurth, Ben Gras, Dennis Andriesse, Cristiano Giuffrida, Her-
bert Bos, and Kaveh Razavi. NetCAT: Practical cache attacks from
the network. In S&P, 2020.

[73] Chris Lattner and Vikram Adve. LLVM: A compilation framework
for lifelong program analysis and transformation. In CGO, 2004.

[74] K. Rustan M. Leino, Peter Müller, and Jan Smans. Verification of
concurrent programs with Chalice. In FOSAD. 2009.

[75] Cullen Linn and Saumya Debray. Obfuscation of executable code to
improve resistance to static disassembly. In CCS, 2003.

[76] Moritz Lipp, Vedad Hadžić, Michael Schwarz, Arthur Perais, Clémen-
tine Maurice, and Daniel Gruss. Take a way: Exploring the security
implications of AMD’s cache way predictors. In ASIACCS, 2020.

[77] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher,
Daniel Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Read-
ing kernel memory from user space. In USENIX Security, 2018.

[78] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee.
Last-level cache side-channel attacks are practical. In S&P, 2015.

[79] Jason Luu, Jeffrey Goeders, Michael Wainberg, Andrew Somerville,
Thien Yu, Konstantin Nasartschuk, Miad Nasr, Sen Wang, Tim Liu,
Nooruddin Ahmed, Kenneth B. Kent, Jason Anderson, Jonathan Rose,
and Vaughn Betz. VTR 7.0: Next generation architecture and CAD
System for FPGAs. ACM Trans. Reconfigurable Technol. Syst., 7(2),
2014.

[80] Giorgi Maisuradze and Christian Rossow. ret2spec: Speculative exe-
cution using return stack buffers. In CCS, 2018.

[81] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay–
A secure two-party computation system. In USENIX Security, 2004.

[82] Clémentine Maurice, Christoph Neumann, Olivier Heen, and Aurélien
Francillon. C5: Cross-cores cache covert channel. In DIMVA, 2015.

[83] Edward McCluskey. Minimization of Boolean functions. Bell System
Tech. J., 35(6), November 1956.

[84] Daniel Moghimi. Downfall: Exploiting speculative data gathering. In
USENIX Security, 2023.

[85] Daniel Moghimi, Moritz Lipp, Berk Sunar, and Michael Schwarz.
Medusa: Microarchitectural data leakage via automated attack synthe-
sis. In USENIX Security, 2020.

[86] Trivikram Muralidharan, Aviad Cohen, Noa Gerson, and Nir Nissim.
File packing from the malware perspective: Techniques, analysis
approaches, and directions for enhancements. ACM Comput. Surv.,
2022.

[87] Michael Neve and Jean-Pierre Seifert. Advances on access-driven
cache attacks on AES. In SAC, 2006.

[88] Markus Oberhumer, Laszlo Molnar, and John Reiser. UPX: The
ultimate packer for executables. https://upx.github.io/, 2024.

[89] Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and Ange-
los D Keromytis. The spy in the sandbox: Practical cache attacks in
JavaScript and their implications. In CCS, 2015.

[90] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: The case of AES. In CT-RSA, 2006.

[91] Alex Ozdemir, Fraser Brown, and Riad S. Wahby. CirC: Compiler
infrastructure for proof systems, software verification, and more. In
S&P, 2022.

[92] Riccardo Paccagnella, Licheng Luo, and Christopher W. Fletcher.
Lord of the ring(s): Side channel attacks on the CPU on-chip ring
interconnect are practical. In USENIX Security, 2021.

[93] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinoc-
chio: Nearly practical verifiable computation. In S&P, 2013.

[94] Colin Percival. Cache missing for fun and profit. In BSDCan, 2005.

[95] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz,
and Stefan Mangard. DRAMA: Exploiting DRAM addressing for
cross-CPU attacks. In USENIX Security, 2016.

[96] Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede. Prime+Scope:
Overcoming the observer effect for high-precision cache contention
attacks. In CCS, 2021.

https://upx.github.io/

[97] Hany Ragab, Enrico Barberis, Herbert Bos, and Cristiano Giuffrida.
Rage against the machine clear: A systematic analysis of machine
clears and their implications for transient execution attacks. In
USENIX Security, 2021.

[98] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and Cris-
tiano Giuffrida. Crosstalk: Speculative data leaks across cores are
real. In S&P, 2021.

[99] Joseph Ravichandran, Weon Taek Na, Jay Lang, and Mengjia Yan.
PACMAN: Attacking ARM pointer authentication with speculative
execution. In ISCA, 2022.

[100] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage.
Hey, you, get off of my cloud: Exploring information leakage in third-
party compute clouds. In CCS, 2009.

[101] Vivek Sagdeo. The Complete Verilog Book. Springer, New York,
1998.

[102] Akashi Satoh, Sumio Morioka, Kohji Takano, and Seiji Munetoh. A
compact Rijndael hardware architecture with S-Box optimization. In
ASIACRYPT, 2001.

[103] Moritz Schloegel, Tim Blazytko, Moritz Contag, Cornelius Ascher-
mann, Julius Basler, Thorsten Holz, and Ali Abbasi. Loki: Hardening
code obfuscation against automated attacks. In USENIX Security,
2022.

[104] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel Weiser, Clé-
mentine Maurice, Raphael Spreitzer, and Stefan Mangard. Keydrown:
Eliminating software-based keystroke timing side-channel attacks. In
NDSS, 2018.

[105] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian
Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad: Cross-
privilege-boundary data sampling. In CCS, 2019.

[106] Srinath Setty, Benjamin Braun, Victor Vu, Andrew J. Blumberg, Bryan
Parno, and Michael Walfish. Resolving the conflict between generality
and plausibility in verified computation. In EuroSys, 2013.

[107] Srinath T. V. Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, An-
drew J. Blumberg, and Michael Walfish. Taking proof-based verified
computation a few steps closer to practicality. In USENIX Security,
2012.

[108] Amit Sharma, Brij B. Gupta, Awadhesh Kumar Singh, and V.K.
Saraswat. Orchestration of APT malware evasive manoeuvers em-
ployed for eluding anti-virus and sandbox defense. Computers &
Security, 2022.

[109] Anatoly Shusterman, Ayush Agarwal, Sioli O’Connell, Daniel Genkin,
Yossi Oren, and Yuval Yarom. Prime+ Probe 1, JavaScript 0: Over-
coming browser-based side-channel defenses. In USENIX Security,
2021.

[110] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser,
Prateek Mittal, Yossi Oren, and Yuval Yarom. Robust website finger-
printing through the cache occupancy channel. In USENIX Security,
2019.

[111] Florian Sieck, Sebastian Berndt, Jan Wichelmann, and Thomas Eisen-
barth. Util:: Lookup: Exploiting key decoding in cryptographic li-
braries. In CCS, 2021.

[112] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, An-
toine Delignat-Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric
Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean-Karim Zinzin-
dohoue, and Santiago Zanella-Béguelin. Dependent types and multi-
monadic effects in F⋆. In POPL, 2016.

[113] Daniël Trujillo, Johannes Wikner, and Kaveh Razavi. Inception: Ex-
posing new attack surfaces with training in transient execution. In
USENIX Security, 2023.

[114] Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos, and Pablo G.
Bringas. SoK: Deep packer inspection: A longitudinal study of the
complexity of run-time packers. In S&P, 2015.

[115] John P. Uyemura. CMOS Logic Circuit Design. Springer, New York,
2001.

[116] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval
Yarom, and Raoul Strackx. Foreshadow: Extracting the keys to the
Intel SGX kingdom with transient out-of-order execution. In USENIX
Security, 2018.

[117] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lippi, Ma-
rina Minkin, Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss,
and Frank Piessens. LVI: Hijacking transient execution through mi-
croarchitectural load value injection. In S&P, 2020.

[118] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro
Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. RIDL: Rogue in-flight data load. In S&P, 2019.

[119] Niki Vazou. Liquid Haskell: Haskell as a theorem prover. PhD thesis,
UC San Diego, 2016.

[120] Niki Vazou, Eric L Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and
Simon Peyton-Jones. Refinement types for haskell. In ICFP, 2014.

[121] Alexander Viand, Patrick Jattke, and Anwar Hithnawi. SoK: Fully
homomorphic encryption compilers. In S&P, 2021.

[122] Riad S. Wahby, Srinath Setty, Zuocheng Ren, Andrew J. Blumberg,
and Michael Walfish. Efficient RAM and control flow in verifiable
outsourced computation. In NDSS, February 2015.

[123] Jack Wampler, Ian Martiny, and Eric Wustrow. ExSpectre: Hiding
malware in speculative execution. In NDSS, 2019.

[124] Chenxi Wang, Jonathan Hill, John Knight, and Jack Davidson. Soft-
ware tamper resistance: Obstructing static analysis of programs. Tech-
nical report, University of Virginia, 2000.

[125] Ping-Lun Wang, Fraser Brown, and Riad S. Wahby. The ghost is the
machine: Weird machines in transient execution. In WOOT, 2023.

[126] Zhenghong Wang and Ruby B Lee. Covert and side channels due to
processor architecture. In ACSAC, 2006.

[127] Johannes Wikner and Kaveh Razavi. Retbleed: Arbitrary speculative
code execution with return instructions. In USENIX Security, 2022.

[128] Johannes Wikner, Daniël Trujillo, and Kaveh Razavi. Phantom: Ex-
ploiting decoder-detectable mispredictions. In MICRO, 2023.

[129] Claire Wolf. Yosys open synthesis suite. https://yosyshq.net/
yosys/, 2024.

[130] Zhenyu Wu, Zhang Xu, and Haining Wang. Whispers in the hyper-
space: High-speed covert channel attacks in the cloud. In USENIX
Security, 2012.

[131] Yichen Xie and Alex Aiken. Saturn: A scalable framework for error
detection using Boolean satisfiability. In TOPLAS, 2007.

[132] Hui Xu, Yangfan Zhou, Yu Kang, and Michael R. Lyu. On secure and
usable program obfuscation: A survey, 2017.

[133] Mengjia Yan, Christopher W Fletcher, and Josep Torrellas. Cache
telepathy: Leveraging shared resource attacks to learn DNN architec-
tures. In USENIX Security, 2020.

[134] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher
Fletcher, Roy Campbell, and Josep Torrellas. Attack directories, not
caches: Side channel attacks in a non-inclusive world. In S&P, 2019.

[135] Yuval Yarom and Katrina Falkner. Flush+Reload: a high resolution,
low noise, L3 cache side-channel attack. In USENIX Security, 2014.

[136] Yuval Yarom, Daniel Genkin, and Nadia Heninger. CacheBleed: A
timing attack on OpenSSL constant time RSA. JCEN, 7(2), 2017.

[137] Jiyong Yu, Aishani Dutta, Trent Jaeger, David Kohlbrenner, and
Christopher W. Fletcher. Synchronization storage channels (S2C):
Timer-less cache side-channel attacks on the Apple M1 via hardware
synchronization instructions. In USENIX Security, 2023.

https://yosyshq.net/yosys/
https://yosyshq.net/yosys/

[138] Qiang Zeng, Lannan Luo, Zhiyun Qian, Xiaojiang Du, Zhoujun Li,
Chin-Tser Huang, and Csilla Farkas. Resilient user-side Android
application repackaging and tampering detection using cryptographi-
cally obfuscated logic bombs. IEEE Transactions on Dependable and
Secure Computing, 2021.

[139] Ruiyi Zhang, Taehyun Kim, Daniel Weber, and Michael Schwarz.
(M)WAIT for it: Bridging the gap between microarchitectural and
architectural side channels. In USENIX Security, 2023.

[140] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.
Cross-VM side channels and their use to extract private keys. In CCS,
2012.

[141] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.
Cross-tenant side-channel attacks in PaaS clouds. In CCS, 2014.

A Compiler input and output

Listing 7 shows how the compiler translates an 8-bit XOR
from C code (a) into: LLVM IR (b); a Verilog circuit (c); truth
tables (d); and assembly (e).

B How does noise from co-tenants on shared
machines affect Flexo?

In Section 5, we evaluated the performance of Flexo’s circuits
by repeatedly running each binary for 100 hours in the AWS
EC2 public cloud environment. To assess the impact of noise
due to other tenants who may have been co-located with our
instances, we now analyze if the runtime and accuracy of our
binaries changed during that time window.

Figures 3 and 4 show the accuracy and runtime of Flexo
over the 100-hour time window. For all these plots, each data
point is the moving median of ten accuracy/runtime samples.

From these plots, we can see that most circuits are very
stable on all the machines. We only see temporal variations
on the AMD Zen 1 and Zen 3 machines. For AMD Zen 1,
the accuracy for all circuits is stable. However, the runtime
of the Simon and AES circuits exhibits notable variances,
displaying what appears to be a periodic pattern occurring
approximately every 24 hours. For AMD Zen 3, the Simon
and SHA-1 circuits have larger variances in accuracy, and
the Simon and AES circuits have larger variances in runtime.
Nevertheless, the accuracy of these circuits is still very high
(usually around 97–98%) even in the presence of noise.

1 bool __weird__xor(
2 uint8_t in1, uint8_t in2, uint8_t* out
3) {
4 out[0] = in1 ^ in2;
5 return false;
6 }

(a) Input C/C++ program

1 define i1 @__weird__xor(
2 i8 %in1, i8 %in2, i8* %out
3) {
4 entry:
5 %xor3 = xor i8 %in2, %in1
6 store i8 %xor3, i8* %out
7 ret i1 false
8 }

(b) Input LLVM IR

1 module __weird__xor(
2 input [7:0] _in1, input [7:0] _in2,
3 output [7:0] _out
4);
5 wire [7:0] _xor;
6

7 assign _xor3 = _in2 ^ _in1;
8 assign _out[7:0] = _xor3;
9 endmodule

(c) Verilog circuit

1 .model __weird__xor
2 .inputs _in1[0] ... _in1[7] _in2[0] ... _in2[7]
3 .outputs _out[0] ... _out[7]
4 .names _in1[0] _in2[0] _out[0]
5 01 1
6 10 1
7 ...
8 .names _in1[7] _in2[7] _out[7]
9 01 1

10 10 1
11 .end

(d) Lookup tables (in BLIF format)

1 call mod_ret_addr
2 movzbq (in1_0), in1_0
3 movzbq (in1_1), in1_1
4 movzbq (in2_0), in2_0
5 movzbq (in2_1), in2_1
6 lea (out_1,in1_0), %r10
7 mov (%r10,in2_1), %r10b
8 lea (out_1,in1_1), %r10
9 mov (%r10,in2_0), %r10b

10 lea (out_0,in1_0), %r10
11 mov (%r10,in2_0), %r10b
12 lea (out_0,in1_1), %r10
13 mov (%r10,in2_1), %r10b

(e) An XOR gate of the generated circuit (in assembly)

Listing 7: The output of each compiler pipeline for an XOR
circuit.

90

92

94

96

98

100
AMD Zen 1

ALU
SHA-1 (1 round)
AES (1 round)
Simon (1 block)
SHA-1 (2 blocks)
AES (1 block)

AMD Zen 2 AMD Zen 3 AMD Zen 4

0 20 40 60 80 100
90

92

94

96

98

100
Intel Skylake

0 20 40 60 80 100

Intel Cascade Lake

0 20 40 60 80 100

Intel Icelake

0 20 40 60 80 100

Intel Sapphire Rapids

Time (hours)

Ac
cu

ra
cy

 (%
)

Figure 3: The accuracy of Flexo over 100 hours.

0

200

400

600

800

AMD Zen 1 AMD Zen 2 AMD Zen 3 AMD Zen 4

0 20 40 60 80 100
0

200

400

600

800

Intel Skylake
ALU
SHA-1 (1 round)
AES (1 round)
Simon (1 block)
SHA-1 (2 blocks)
AES (1 block)

0 20 40 60 80 100

Intel Cascade Lake

0 20 40 60 80 100

Intel Icelake

0 20 40 60 80 100

Intel Sapphire Rapids

Time (hours)

Ru
nt

im
e

(m
s)

Figure 4: The runtime of Flexo over 100 hours.

	Introduction
	Background and related work
	Transient execution
	Microarchitectural weird machines

	New circuit construction
	Differential encoding
	Bit-wise error detection and correction
	Optimizing the memory layout

	A compiler for Flexo
	The compilation pipeline

	Evaluation
	How does Flexo compare to prior work?
	How large can a Flexo circuit be?
	How does Flexo perform on composed circuits?

	A weird machine packer
	Conclusion and future work
	Compiler input and output
	How does noise from co-tenants on shared machines affect Flexo?

